Excited_state url: https://searcheng.in/e/z/r57pwk
Contributor
Become a Contributor
  • https://en.wikipedia.org/wiki/Excited_state
    Excited state
    In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation (with the notable exception of systems that exhibit negative temperature). The lifetime of a system in an excited state is usually short: spontaneous or induced emission of a quantum of energy (such as a photon or a phonon) usually occurs shortly after the system is promoted to the excited state, returning the system to a state with lower energy (a less excited state or the ground state). This return to a lower energy level is often loosely described as decay and is the inverse of excitation. Long-lived excited states are often called metastable. Long-lived nuclear isomers and singlet oxygen are two examples of this. Atomic excitation...
    EN.WIKIPEDIA.ORG
    Similar Pages
    https://en.wikipedia.org/wiki/Excited_state
    Excited state
    In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation (with the notable exception of systems that exhibit negative temperature). The lifetime of a system in an excited state is usually short: spontaneous or induced emission of a quantum of energy (such as a photon or a phonon) usually occurs shortly after the system is promoted to the excited state, returning the system to a state with lower energy (a less excited state or the ground state). This return to a lower energy level is often loosely described as decay and is the inverse of excitation. Long-lived excited states are often called metastable. Long-lived nuclear isomers and singlet oxygen are two examples of this. Atomic excitation...
    EN.WIKIPEDIA.ORG
    https://en.wikipedia.org/wiki/Excited_state
    Excited state
    In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation (with the notable exception of systems that exhibit negative temperature). The lifetime of a system in an excited state is usually short: spontaneous or induced emission of a quantum of energy (such as a photon or a phonon) usually occurs shortly after the system is promoted to the excited state, returning the system to a state with lower energy (a less excited state or the ground state). This return to a lower energy level is often loosely described as decay and is the inverse of excitation. Long-lived excited states are often called metastable. Long-lived nuclear isomers and singlet oxygen are two examples of this. Atomic excitation...
    EN.WIKIPEDIA.ORG
    https://en.wikipedia.org/wiki/Excited_state
    Excited state
    In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation (with the notable exception of systems that exhibit negative temperature). The lifetime of a system in an excited state is usually short: spontaneous or induced emission of a quantum of energy (such as a photon or a phonon) usually occurs shortly after the system is promoted to the excited state, returning the system to a state with lower energy (a less excited state or the ground state). This return to a lower energy level is often loosely described as decay and is the inverse of excitation. Long-lived excited states are often called metastable. Long-lived nuclear isomers and singlet oxygen are two examples of this. Atomic excitation...
    EN.WIKIPEDIA.ORG
    https://en.wikipedia.org/wiki/Excited_state
    Excited state
    In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation (with the notable exception of systems that exhibit negative temperature). The lifetime of a system in an excited state is usually short: spontaneous or induced emission of a quantum of energy (such as a photon or a phonon) usually occurs shortly after the system is promoted to the excited state, returning the system to a state with lower energy (a less excited state or the ground state). This return to a lower energy level is often loosely described as decay and is the inverse of excitation. Long-lived excited states are often called metastable. Long-lived nuclear isomers and singlet oxygen are two examples of this. Atomic excitation...
    EN.WIKIPEDIA.ORG
    https://en.wikipedia.org/wiki/Excited_state
    Excited state
    In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation (with the notable exception of systems that exhibit negative temperature). The lifetime of a system in an excited state is usually short: spontaneous or induced emission of a quantum of energy (such as a photon or a phonon) usually occurs shortly after the system is promoted to the excited state, returning the system to a state with lower energy (a less excited state or the ground state). This return to a lower energy level is often loosely described as decay and is the inverse of excitation. Long-lived excited states are often called metastable. Long-lived nuclear isomers and singlet oxygen are two examples of this. Atomic excitation...
    EN.WIKIPEDIA.ORG
    https://en.wikipedia.org/wiki/Excited_state
    Excited state
    In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to an increase in energy level above a chosen starting point, usually the ground state, but sometimes an already excited state. The temperature of a group of particles is indicative of the level of excitation (with the notable exception of systems that exhibit negative temperature). The lifetime of a system in an excited state is usually short: spontaneous or induced emission of a quantum of energy (such as a photon or a phonon) usually occurs shortly after the system is promoted to the excited state, returning the system to a state with lower energy (a less excited state or the ground state). This return to a lower energy level is often loosely described as decay and is the inverse of excitation. Long-lived excited states are often called metastable. Long-lived nuclear isomers and singlet oxygen are two examples of this. Atomic excitation...
    EN.WIKIPEDIA.ORG
    0 Tags 0 Shares
  • https://en.wikipedia.org/wiki/Sodium-vapor_lamp
    Sodium-vapor lamp
    A sodium-vapor lamp is a gas-discharge lamp that uses sodium in an excited state to produce light at a characteristic wavelength near 589 nm. Two varieties of such lamps exist: low pressure and high pressure. Low-pressure sodium lamps are highly efficient electrical light sources, but their yellow light restricts applications to outdoor lighting, such as street lamps, where they are widely used. High-pressure sodium lamps emit a broader spectrum of light than the low-pressure lamps, but they still have poorer color rendering than other types of lamps. Low-pressure sodium lamps only give monochromatic yellow light and so inhibit color vision at night. Single ended self-starting lamps are insulated with a mica disc and contained in a borosilicate glass gas discharge tube (arc tube) and a metal cap. They include the sodium-vapor lamp that is the gas-discharge lamp in street lighting. Development The low-pressure sodium arc discharge lamp was first made practical around 1920 owing to the development of a type of glass that could resist the corrosive effects of sodium vapor. These operated at pressures...
    EN.WIKIPEDIA.ORG
    Similar Pages
    0 Tags 0 Shares
Contributor
Become a Contributor

Curators

Fetching Curators...

Password Copied!

Please Wait....