CHATGPT AI
fitting
_parameters_file, "r")
fitting_parameters = json.load(f)
f.close()
# Read in the initial guess parameters
initial_guess_file = os.path.join(data_directory, "initial_guess.json")
f = open(initial_guess_file, "r")
initial_guess = json.load(f)
f.close()
# Read in the data files
datafiles = []
for filename in os.listdir(data_directory):
if filename[-4:] == ".csv":
datafiles.append(os.path.join(data_directory, filename))
# Read in the data from each file and store it as a list of dictionaries with keys 'x' and 'y'
data = [] # List of dictionaries with keys 'x' and 'y' for each dataset to be fitted
for file in datafiles:
print("Loading", file)
x, y = np.genfromtxt(file, delimiter=",").T # Transpose makes it easier to work with
dic = {'x': x, 'y': y} # Create a dictionary entry for this dataset
data.append(dic) # Add it to the list of datasets
print("Loaded", len(x), "points")
print("Loaded", len(data), "datasets\n")
# Fit the model to all of the datasets simultaneously using lmfit's Parameters class and minimize function
fitparams = lmfit.Parameters() # Create an empty Parameters object to store the fit parameters
for key in fitting_parameters: # Loop through all of the parameters that need to be fitted and add them to fitparams
param = fitting_parameters[key] # Get a dictionary containing information about this parameter from fitting_parameters dictionary
fitparams.add(key, value=initial_guess[key], vary=param['vary'], min=param['min'], max=param['max']) # Add this parameter to fitparams using information from param and initial guess values from initial guess dictionary (which should have been read in earlier)
fitting_parameters = json.load(f)
f.close()
# Read in the initial guess parameters
initial_guess_file = os.path.join(data_directory, "initial_guess.json")
f = open(initial_guess_file, "r")
initial_guess = json.load(f)
f.close()
# Read in the data files
datafiles = []
for filename in os.listdir(data_directory):
if filename[-4:] == ".csv":
datafiles.append(os.path.join(data_directory, filename))
# Read in the data from each file and store it as a list of dictionaries with keys 'x' and 'y'
data = [] # List of dictionaries with keys 'x' and 'y' for each dataset to be fitted
for file in datafiles:
print("Loading", file)
x, y = np.genfromtxt(file, delimiter=",").T # Transpose makes it easier to work with
dic = {'x': x, 'y': y} # Create a dictionary entry for this dataset
data.append(dic) # Add it to the list of datasets
print("Loaded", len(x), "points")
print("Loaded", len(data), "datasets\n")
# Fit the model to all of the datasets simultaneously using lmfit's Parameters class and minimize function
fitparams = lmfit.Parameters() # Create an empty Parameters object to store the fit parameters
for key in fitting_parameters: # Loop through all of the parameters that need to be fitted and add them to fitparams
param = fitting_parameters[key] # Get a dictionary containing information about this parameter from fitting_parameters dictionary
fitparams.add(key, value=initial_guess[key], vary=param['vary'], min=param['min'], max=param['max']) # Add this parameter to fitparams using information from param and initial guess values from initial guess dictionary (which should have been read in earlier)
_parameters_file, "r")
fitting_parameters = json.load(f)
f.close()
# Read in the initial guess parameters
initial_guess_file = os.path.join(data_directory, "initial_guess.json")
f = open(initial_guess_file, "r")
initial_guess = json.load(f)
f.close()
# Read in the data files
datafiles = []
for filename in os.listdir(data_directory):
if filename[-4:] == ".csv":
datafiles.append(os.path.join(data_directory, filename))
# Read in the data from each file and store it as a list of dictionaries with keys 'x' and 'y'
data = [] # List of dictionaries with keys 'x' and 'y' for each dataset to be fitted
for file in datafiles:
print("Loading", file)
x, y = np.genfromtxt(file, delimiter=",").T # Transpose makes it easier to work with
dic = {'x': x, 'y': y} # Create a dictionary entry for this dataset
data.append(dic) # Add it to the list of datasets
print("Loaded", len(x), "points")
print("Loaded", len(data), "datasets\n")
# Fit the model to all of the datasets simultaneously using lmfit's Parameters class and minimize function
fitparams = lmfit.Parameters() # Create an empty Parameters object to store the fit parameters
for key in fitting_parameters: # Loop through all of the parameters that need to be fitted and add them to fitparams
param = fitting_parameters[key] # Get a dictionary containing information about this parameter from fitting_parameters dictionary
fitparams.add(key, value=initial_guess[key], vary=param['vary'], min=param['min'], max=param['max']) # Add this parameter to fitparams using information from param and initial guess values from initial guess dictionary (which should have been read in earlier)
0 Comments & Tags
0 Distribuiri
1 Views