• https://en.wikipedia.org/wiki/Antimatter
    https://en.wikipedia.org/wiki/Antimatter
    EN.WIKIPEDIA.ORG
    Antimatter
    In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter. Antimatter occurs in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form antiatoms. Minuscule numbers of antiparticles can be generated at particle accelerators; however, total artificial production has been only a few nanograms. No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling. In theory, a particle and its antiparticle (for example, a proton and an antiproton) have the same mass, but opposite electric charge, and other differences in quantum numbers. A collision between any particle and its anti-particle partner leads to their mutual annihilation...
    2702 Comments & Tags 0 Distribuiri 1 Views
  • https://en.wikipedia.org/wiki/Mutual_information

    https://en.wikipedia.org/wiki/Mutual_information
    EN.WIKIPEDIA.ORG
    Mutual information
    In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the "amount of information" (in units such as shannons (bits), nats or hartleys) obtained about one random variable by observing the other random variable. The concept of mutual information is intimately linked to that of entropy of a random variable, a fundamental notion in information theory that quantifies the expected "amount of information" held in a random variable. Not limited to real-valued random variables and linear dependence like the correlation coefficient, MI is more general and determines how different the joint distribution of the pair ( X , Y ) {\displaystyle (X,Y)}...
    1305 Comments & Tags 0 Distribuiri 1 Views
  • https://en.wikipedia.org/wiki/Discontinuous_electrophoresis
    https://en.wikipedia.org/wiki/Discontinuous_electrophoresis
    EN.WIKIPEDIA.ORG
    Discontinuous electrophoresis
    Discontinuous electrophoresis (colloquially disc electrophoresis) is a type of polyacrylamide gel electrophoresis. It was developed by Ornstein and Davis. This method produces high resolution and good band definition. It is widely used technique for separating proteins according to size and charge. Method In this method, the gel is divided into two discontinuous parts, resolving and stacking gel, both have different concentrations of polyacrylamide. The one with lower concentration is stacked on top of the one with higher concentration. Discontinuity is based on four parameters: gel structure, pH value of the buffer, ionic strength of the buffer, and the nature of the ions in the gel and electrode buffer. The electrode buffer contains glycine. Glycine has very low net charge at pH 6.8 of stacking gel, so it has low mobility. The proteins are separated according to the principle of isotachophoresis and form stacks in the order of mobility (stacking effect). Mobility depends on net charge, not on the size of the molecule. Proteins move towards anode slowly at constant speed till they reach limit of separation gel...
    179 Comments & Tags 0 Distribuiri 1 Views
  • https://en.wikipedia.org/wiki/Rocket_propellant
    https://en.wikipedia.org/wiki/Rocket_propellant
    EN.WIKIPEDIA.ORG
    Rocket propellant
    Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines. Overview Rockets create thrust by expelling mass rear-ward, at high velocity. The thrust produced can be calculated by multiplying the mass flow rate of the propellants by their exhaust velocity relative to the rocket (specific impulse). A rocket can be thought of as being accelerated by the pressure of the combusting gases against the combustion chamber and nozzle, not by "pushing" against the air behind or below it. Rocket engines perform best in outer space because of the lack of air pressure on the outside of the engine. In space it is also possible to fit a longer nozzle without suffering from flow separation. Most chemical propellants release energy through redox chemistry, more specifically combustion. As such, both an oxidizing agent and a reducing agent (fuel) must be present in the mixture. Decomposition, such as that...
    1689 Comments & Tags 0 Distribuiri 1 Views
  • https://en.wikipedia.org/wiki/Rocket_propellant
    https://en.wikipedia.org/wiki/Rocket_propellant
    EN.WIKIPEDIA.ORG
    Rocket propellant
    Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines. Overview Rockets create thrust by expelling mass rear-ward, at high velocity. The thrust produced can be calculated by multiplying the mass flow rate of the propellants by their exhaust velocity relative to the rocket (specific impulse). A rocket can be thought of as being accelerated by the pressure of the combusting gases against the combustion chamber and nozzle, not by "pushing" against the air behind or below it. Rocket engines perform best in outer space because of the lack of air pressure on the outside of the engine. In space it is also possible to fit a longer nozzle without suffering from flow separation. Most chemical propellants release energy through redox chemistry, more specifically combustion. As such, both an oxidizing agent and a reducing agent (fuel) must be present in the mixture. Decomposition, such as that...
    452 Comments & Tags 0 Distribuiri 1 Views
  • https://en.wikipedia.org/wiki/Rocket_propellant
    https://en.wikipedia.org/wiki/Rocket_propellant
    EN.WIKIPEDIA.ORG
    Rocket propellant
    Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines. Overview Rockets create thrust by expelling mass rear-ward, at high velocity. The thrust produced can be calculated by multiplying the mass flow rate of the propellants by their exhaust velocity relative to the rocket (specific impulse). A rocket can be thought of as being accelerated by the pressure of the combusting gases against the combustion chamber and nozzle, not by "pushing" against the air behind or below it. Rocket engines perform best in outer space because of the lack of air pressure on the outside of the engine. In space it is also possible to fit a longer nozzle without suffering from flow separation. Most chemical propellants release energy through redox chemistry, more specifically combustion. As such, both an oxidizing agent and a reducing agent (fuel) must be present in the mixture. Decomposition, such as that...
    0 Comments & Tags 0 Distribuiri 1 Views
  • https://en.wikipedia.org/wiki/Rocket_propellant
    https://en.wikipedia.org/wiki/Rocket_propellant
    EN.WIKIPEDIA.ORG
    Rocket propellant
    Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines. Overview Rockets create thrust by expelling mass rear-ward, at high velocity. The thrust produced can be calculated by multiplying the mass flow rate of the propellants by their exhaust velocity relative to the rocket (specific impulse). A rocket can be thought of as being accelerated by the pressure of the combusting gases against the combustion chamber and nozzle, not by "pushing" against the air behind or below it. Rocket engines perform best in outer space because of the lack of air pressure on the outside of the engine. In space it is also possible to fit a longer nozzle without suffering from flow separation. Most chemical propellants release energy through redox chemistry, more specifically combustion. As such, both an oxidizing agent and a reducing agent (fuel) must be present in the mixture. Decomposition, such as that...
    0 Comments & Tags 0 Distribuiri 1 Views
  • #Science #ScienceNews #Rocket #propellant

    Rockets create thrust by expelling mass rear-ward, at high velocity. The thrust produced can be calculated by multiplying the mass flow rate of the propellants by their exhaust velocity relative to the rocket (specific impulse). A rocket can be thought of as being accelerated by the pressure of the combusting gases against the combustion chamber and nozzle, not by "pushing" against the air behind or below it. Rocket engines perform best in outer space because of the lack of air pressure on the outside of the engine. In space it is also possible to fit a longer nozzle without suffering from flow separation.

    Most chemical propellants release energy through redox chemistry, more specifically combustion. As such, both an oxidizing agent and a reducing agent (fuel) must be present in the mixture. Decomposition, such as that of highly unstable peroxide bonds in monopropellant rockets, can also be the source of energy.

    In the case of bipropellant liquid rockets, a mixture of reducing fuel and oxidizing oxidizer is introduced into a combustion chamber, typically using a turbopump to overcome the pressure. As combustion takes place, the liquid propellant mass is converted into a huge volume of gas at high temperature and pressure. This exhaust stream is ejected from the engine nozzle at high velocity, creating an opposing force that propels the rocket forward in accordance with Newton's laws of motion.

    Chemical rockets can be grouped by phase. Solid rockets use propellant in the solid phase, liquid fuel rockets use propellant in the liquid phase, gas fuel rockets use propellant in the gas phase, and hybrid rockets use a combination of solid and liquid or gaseous propellants.

    In the case of solid rocket motors, the fuel and oxidizer are combined when the motor is cast. Propellant combustion occurs inside the motor casing, which must contain the pressures developed. Solid rockets typically have higher thrust, less specific impulse, shorter burn times, and a higher mass than liquid rockets, and additionally cannot be stopped once lit.
    #Science #ScienceNews #Rocket #propellant Rockets create thrust by expelling mass rear-ward, at high velocity. The thrust produced can be calculated by multiplying the mass flow rate of the propellants by their exhaust velocity relative to the rocket (specific impulse). A rocket can be thought of as being accelerated by the pressure of the combusting gases against the combustion chamber and nozzle, not by "pushing" against the air behind or below it. Rocket engines perform best in outer space because of the lack of air pressure on the outside of the engine. In space it is also possible to fit a longer nozzle without suffering from flow separation. Most chemical propellants release energy through redox chemistry, more specifically combustion. As such, both an oxidizing agent and a reducing agent (fuel) must be present in the mixture. Decomposition, such as that of highly unstable peroxide bonds in monopropellant rockets, can also be the source of energy. In the case of bipropellant liquid rockets, a mixture of reducing fuel and oxidizing oxidizer is introduced into a combustion chamber, typically using a turbopump to overcome the pressure. As combustion takes place, the liquid propellant mass is converted into a huge volume of gas at high temperature and pressure. This exhaust stream is ejected from the engine nozzle at high velocity, creating an opposing force that propels the rocket forward in accordance with Newton's laws of motion. Chemical rockets can be grouped by phase. Solid rockets use propellant in the solid phase, liquid fuel rockets use propellant in the liquid phase, gas fuel rockets use propellant in the gas phase, and hybrid rockets use a combination of solid and liquid or gaseous propellants. In the case of solid rocket motors, the fuel and oxidizer are combined when the motor is cast. Propellant combustion occurs inside the motor casing, which must contain the pressures developed. Solid rockets typically have higher thrust, less specific impulse, shorter burn times, and a higher mass than liquid rockets, and additionally cannot be stopped once lit.
    0 Comments & Tags 0 Distribuiri 1 Views
  • https://en.wikipedia.org/wiki/Book
    https://en.wikipedia.org/wiki/Book
    EN.WIKIPEDIA.ORG
    Book
    A book is a medium for recording information in the form of writing or images, typically composed of many pages (made of papyrus, parchment, vellum, or paper) bound together and protected by a cover. The technical term for this physical arrangement is codex (plural, codices). In the history of hand-held physical supports for extended written compositions or records, the codex replaces its predecessor, the scroll. A single sheet in a codex is a leaf and each side of a leaf is a page. As an intellectual object, a book is prototypically a composition of such great length that it takes a considerable investment of time to compose and still considered as an investment of time to read. In a restricted sense, a book is a self-sufficient section or part of a longer composition, a usage reflecting that, in antiquity, long works had to be written on several scrolls and each scroll had to be identified by the book it contained. Each part of...
    895 Comments & Tags 0 Distribuiri 1 Views
  • https://www.nationalgeographic.org/encyclopedia/conservation/
    https://www.nationalgeographic.org/encyclopedia/conservation/
    WWW.NATIONALGEOGRAPHIC.ORG
    Conservation | National Geographic Society
    Conservation is the act of protecting Earth’s natural resources for current and future generations.
    0 Comments & Tags 0 Distribuiri 1 Views

Password Copied!

Please Wait....