• #Science #ScienceNews #Quantum #Quantum_Entanglement #Entanglement #Albert_Einstein

    Quantum entanglement is the phenomenon that occurs when a group of particles is generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.

    Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have a clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior gives rise to seemingly paradoxical effects: any measurement of a particle's properties results in an irreversible wave function collapse of that particle and changes the original quantum state. With entangled particles, such measurements affect the entangled system as a whole.

    Such phenomena were the subject of a 1935 paper by Albert Einstein, Boris Podolsky, and Nathan Rosen, and several papers by Erwin Schrödinger shortly thereafter, describing what came to be known as the EPR paradox. Einstein and others considered such behavior impossible, as it violated the local realism view of causality (Einstein referring to it as "spooky action at a distance") and argued that the accepted formulation of quantum mechanics must therefore be incomplete.

    Later, however, the counterintuitive predictions of quantum mechanics were verified in tests where polarization or spin of entangled particles was measured at separate locations, statistically violating Bell's inequality. In earlier tests, it could not be ruled out that the result at one point could have been subtly transmitted to the remote point, affecting the outcome at the second location. However, so-called "loophole-free" Bell tests have been performed where the locations were sufficiently separated that communications at the speed of light would have taken longer—in one case, 10,000 times longer—than the interval between the measurements.

    According to some interpretations of quantum mechanics, the effect of one measurement occurs instantly. Other interpretations which do not recognize wavefunction collapse dispute that there is any "effect" at all. However, all interpretations agree that entanglement produces a correlation between the measurements and that the mutual information between the entangled particles can be exploited, but that any transmission of the information at faster-than-light speeds is impossible.

    Quantum entanglement has been demonstrated experimentally with photons, neutrinos, electrons, molecules as large as buckyballs, and even small diamonds. The utilization of entanglement in communication, computation, and quantum radar is a very active area of research and development.

    Despite much popular thought to the contrary, quantum entanglement cannot be used for faster-than-light communication.
    #Science #ScienceNews #Quantum #Quantum_Entanglement #Entanglement #Albert_Einstein Quantum entanglement is the phenomenon that occurs when a group of particles is generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics. Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have a clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior gives rise to seemingly paradoxical effects: any measurement of a particle's properties results in an irreversible wave function collapse of that particle and changes the original quantum state. With entangled particles, such measurements affect the entangled system as a whole. Such phenomena were the subject of a 1935 paper by Albert Einstein, Boris Podolsky, and Nathan Rosen, and several papers by Erwin Schrödinger shortly thereafter, describing what came to be known as the EPR paradox. Einstein and others considered such behavior impossible, as it violated the local realism view of causality (Einstein referring to it as "spooky action at a distance") and argued that the accepted formulation of quantum mechanics must therefore be incomplete. Later, however, the counterintuitive predictions of quantum mechanics were verified in tests where polarization or spin of entangled particles was measured at separate locations, statistically violating Bell's inequality. In earlier tests, it could not be ruled out that the result at one point could have been subtly transmitted to the remote point, affecting the outcome at the second location. However, so-called "loophole-free" Bell tests have been performed where the locations were sufficiently separated that communications at the speed of light would have taken longer—in one case, 10,000 times longer—than the interval between the measurements. According to some interpretations of quantum mechanics, the effect of one measurement occurs instantly. Other interpretations which do not recognize wavefunction collapse dispute that there is any "effect" at all. However, all interpretations agree that entanglement produces a correlation between the measurements and that the mutual information between the entangled particles can be exploited, but that any transmission of the information at faster-than-light speeds is impossible. Quantum entanglement has been demonstrated experimentally with photons, neutrinos, electrons, molecules as large as buckyballs, and even small diamonds. The utilization of entanglement in communication, computation, and quantum radar is a very active area of research and development. Despite much popular thought to the contrary, quantum entanglement cannot be used for faster-than-light communication.
    0 Comments & Tags 0 hisse senetleri 1 Views
  • #Science #ScienceNews #universe #stars #lightyears #milkyway #galaxy #billion_years

    Over time, the universe and its contents have evolved; for example, the relative population of quasars and galaxies has changed and space itself has expanded. Due to this expansion, scientists on Earth can observe the light from a galaxy 30 billion light-years away even though that light has traveled for only 13 billion years; the very space between them has expanded. This expansion is consistent with the observation that the light from distant galaxies has been redshifted; the photons emitted have been stretched to longer wavelengths and lower frequencies during their journey. Analyses of Type Ia supernovae indicate that the spatial expansion is accelerating.

    The more matter there is in the universe, the stronger the mutual gravitational pull of the matter. If the universe were too dense then it would re-collapse into a gravitational singularity. However, if the universe contained too little matter then the self-gravity would be too weak for astronomical structures, like galaxies or planets, to form. Since the Big Bang, the universe has expanded monotonically. Perhaps unsurprisingly, our universe has just the right mass-energy density, equivalent to about 5 protons per cubic meter, which has allowed it to expand for the last 13.8 billion years, giving time to form the universe as observed today.

    There are dynamic forces acting on the particles in the universe which affect the expansion rate. Before 1998, it was expected that the expansion rate would be decreasing as time went on due to the influence of gravitational interactions in the universe; and thus there is an additional observable quantity in the universe called the deceleration parameter, which most cosmologists expected to be positive and related to the matter density of the universe. In 1998, the deceleration parameter was measured by two different groups to be negative, approximately -0.55, which technically implies that the second derivative of the cosmic scale factor has been positive in the last 5-6 billion years. This acceleration does not, however, imply that the Hubble parameter is currently increasing; see the deceleration parameter for details.
    #Science #ScienceNews #universe #stars #lightyears #milkyway #galaxy #billion_years Over time, the universe and its contents have evolved; for example, the relative population of quasars and galaxies has changed and space itself has expanded. Due to this expansion, scientists on Earth can observe the light from a galaxy 30 billion light-years away even though that light has traveled for only 13 billion years; the very space between them has expanded. This expansion is consistent with the observation that the light from distant galaxies has been redshifted; the photons emitted have been stretched to longer wavelengths and lower frequencies during their journey. Analyses of Type Ia supernovae indicate that the spatial expansion is accelerating. The more matter there is in the universe, the stronger the mutual gravitational pull of the matter. If the universe were too dense then it would re-collapse into a gravitational singularity. However, if the universe contained too little matter then the self-gravity would be too weak for astronomical structures, like galaxies or planets, to form. Since the Big Bang, the universe has expanded monotonically. Perhaps unsurprisingly, our universe has just the right mass-energy density, equivalent to about 5 protons per cubic meter, which has allowed it to expand for the last 13.8 billion years, giving time to form the universe as observed today. There are dynamic forces acting on the particles in the universe which affect the expansion rate. Before 1998, it was expected that the expansion rate would be decreasing as time went on due to the influence of gravitational interactions in the universe; and thus there is an additional observable quantity in the universe called the deceleration parameter, which most cosmologists expected to be positive and related to the matter density of the universe. In 1998, the deceleration parameter was measured by two different groups to be negative, approximately -0.55, which technically implies that the second derivative of the cosmic scale factor has been positive in the last 5-6 billion years. This acceleration does not, however, imply that the Hubble parameter is currently increasing; see the deceleration parameter for details.
    0 Comments & Tags 0 hisse senetleri 1 Views
  • #Science #ScienceNews #electromagnetism #electricity #magnetism

    In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, two distinct but closely intertwined phenomena. Electromagnetic forces occur between any two charged particles, causing an attraction between particles with opposite charges and repulsion between particles with the same charge, while magnetism is an interaction that occurs exclusively between charged particles in relative motion. These two effects combine to create electromagnetic fields in the vicinity of charge particles, which can exert accelerate other charged particles via the Lorentz force. At high energy, the weak force and electromagnetic force are unified as a single electroweak force.

    The electromagnetic force is responsible for many of the chemical and physical phenomena observed in daily life. The electrostatic attraction between atomic nuclei and their electrons holds atoms together. Electric forces also allow different atoms to combine into molecules, including the macromolecules such as proteins that form the basis of life. Meanwhile, magnetic interactions between the spin and angular momentum magnetic moments of electrons also play a role in chemical reactivity; such relationships are studied in spin chemistry. Electromagnetism also plays a crucial role in modern technology: electrical energy production, transformation and distribution, light, heat, and sound production and detection, fiber optic and wireless communication, sensors, computation, electrolysis, electroplating and mechanical motors and actuators.

    Electromagnetism has been studied since ancient times. Many ancient civilizations, including the Greeks and the Mayans created wide-ranging theories to explain lightning, static electricity, and the attraction between magnetized pieces of iron ore. However, it wasn't until the late 18th century that scientists began to develop a mathematical basis for understanding the nature of electromagnetic interactions. In the 18th and 19th centuries, prominent scientists and mathematicians such as Coulomb, Gauss and Faraday developed namesake laws which helped to explain the formation and interaction of electromagnetic fields. This process culminated in the 1860s with the discovery of Maxwell's equations, a set of four partial differential equations which provide a complete description of classical electromagnetic fields. Besides providing a sound mathematical basis for the relationships between electricity and magnetism that scientists had been exploring for centuries, Maxwell's equations also predicted the existence of self-sustaining electromagnetic waves. Maxwell postulated that such waves make up visible light, which was later shown to be true. Indeed, gamma-rays, x-rays, ultraviolet, visible, infrared radiation, microwaves and radio waves were all determined to be electromagnetic radiation differing only in their range of frequencies.

    In the modern era, scientists have continued to refine the theorem of electromagnetism to take into account the effects of modern physics, including quantum mechanics and relativity. Indeed, the theoretical implications of electromagnetism, particularly the establishment of the speed of light based on properties of the "medium" of propagation (permeability and permittivity), helped inspire Einstein's theory of special relativity in 1905. Meanwhile, the field of quantum electrodynamics (QED) has modified Maxwell's equations to be consistent with the quantized nature of matter. In QED, the electromagnetic field is expressed in terms of discrete particles known as photons, which are also the physical quanta of light. Today, there exist many problems in electromagnetism that remain unsolved, such as the existence of magnetic monopoles and the mechanism by which some organisms can sense electric and magnetic fields.
    #Science #ScienceNews #electromagnetism #electricity #magnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, two distinct but closely intertwined phenomena. Electromagnetic forces occur between any two charged particles, causing an attraction between particles with opposite charges and repulsion between particles with the same charge, while magnetism is an interaction that occurs exclusively between charged particles in relative motion. These two effects combine to create electromagnetic fields in the vicinity of charge particles, which can exert accelerate other charged particles via the Lorentz force. At high energy, the weak force and electromagnetic force are unified as a single electroweak force. The electromagnetic force is responsible for many of the chemical and physical phenomena observed in daily life. The electrostatic attraction between atomic nuclei and their electrons holds atoms together. Electric forces also allow different atoms to combine into molecules, including the macromolecules such as proteins that form the basis of life. Meanwhile, magnetic interactions between the spin and angular momentum magnetic moments of electrons also play a role in chemical reactivity; such relationships are studied in spin chemistry. Electromagnetism also plays a crucial role in modern technology: electrical energy production, transformation and distribution, light, heat, and sound production and detection, fiber optic and wireless communication, sensors, computation, electrolysis, electroplating and mechanical motors and actuators. Electromagnetism has been studied since ancient times. Many ancient civilizations, including the Greeks and the Mayans created wide-ranging theories to explain lightning, static electricity, and the attraction between magnetized pieces of iron ore. However, it wasn't until the late 18th century that scientists began to develop a mathematical basis for understanding the nature of electromagnetic interactions. In the 18th and 19th centuries, prominent scientists and mathematicians such as Coulomb, Gauss and Faraday developed namesake laws which helped to explain the formation and interaction of electromagnetic fields. This process culminated in the 1860s with the discovery of Maxwell's equations, a set of four partial differential equations which provide a complete description of classical electromagnetic fields. Besides providing a sound mathematical basis for the relationships between electricity and magnetism that scientists had been exploring for centuries, Maxwell's equations also predicted the existence of self-sustaining electromagnetic waves. Maxwell postulated that such waves make up visible light, which was later shown to be true. Indeed, gamma-rays, x-rays, ultraviolet, visible, infrared radiation, microwaves and radio waves were all determined to be electromagnetic radiation differing only in their range of frequencies. In the modern era, scientists have continued to refine the theorem of electromagnetism to take into account the effects of modern physics, including quantum mechanics and relativity. Indeed, the theoretical implications of electromagnetism, particularly the establishment of the speed of light based on properties of the "medium" of propagation (permeability and permittivity), helped inspire Einstein's theory of special relativity in 1905. Meanwhile, the field of quantum electrodynamics (QED) has modified Maxwell's equations to be consistent with the quantized nature of matter. In QED, the electromagnetic field is expressed in terms of discrete particles known as photons, which are also the physical quanta of light. Today, there exist many problems in electromagnetism that remain unsolved, such as the existence of magnetic monopoles and the mechanism by which some organisms can sense electric and magnetic fields.
    0 Comments & Tags 0 hisse senetleri 1 Views
  • #Science #ScienceNews #incandescentlightbulb #bulb #light

    An incandescent light bulb, incandescent lamp or incandescent light globe is an electric light with a wire filament heated until it glows. The filament is enclosed in a glass bulb with a vacuum or inert gas to protect the filament from oxidation. Current is supplied to the filament by terminals or wires embedded in the glass. A bulb socket provides mechanical support and electrical connections.

    Incandescent bulbs are manufactured in a wide range of sizes, light output, and voltage ratings, from 1.5 volts to about 300 volts. They require no external regulating equipment, have low manufacturing costs, and work equally well on either alternating current or direct current. As a result, the incandescent bulb became widely used in household and commercial lighting, for portable lighting such as table lamps, car headlamps, and flashlights, and for decorative and advertising lighting.

    Incandescent bulbs are much less efficient than other types of electric lighting. Less than 5% of the energy they consume is converted into visible light; the rest is lost as heat. The luminous efficacy of a typical incandescent bulb for 120 V operation is 16 lumens per watt, compared with 60 lm/W for a compact fluorescent bulb or 150 lm/W for some white LED lamps.

    The heat produced by filaments is used in some applications, such as heat lamps in incubators, lava lamps, and the Easy-Bake Oven toy. Quartz envelope halogen infrared heaters are used for industrial processes such as paint curing and space heating.

    Incandescent bulbs typically have short lifetimes compared with other types of lighting; around 1,000 hours for home light bulbs versus typically 10,000 hours for compact fluorescents and 20,000–30,000 hours for lighting LEDs. Most incandescent bulbs can be replaced by fluorescent lamps, high-intensity discharge lamps, and light-emitting diode lamps (LED). Some governments have begun a phase-out of incandescent light bulbs to reduce energy consumption.
    #Science #ScienceNews #incandescentlightbulb #bulb #light An incandescent light bulb, incandescent lamp or incandescent light globe is an electric light with a wire filament heated until it glows. The filament is enclosed in a glass bulb with a vacuum or inert gas to protect the filament from oxidation. Current is supplied to the filament by terminals or wires embedded in the glass. A bulb socket provides mechanical support and electrical connections. Incandescent bulbs are manufactured in a wide range of sizes, light output, and voltage ratings, from 1.5 volts to about 300 volts. They require no external regulating equipment, have low manufacturing costs, and work equally well on either alternating current or direct current. As a result, the incandescent bulb became widely used in household and commercial lighting, for portable lighting such as table lamps, car headlamps, and flashlights, and for decorative and advertising lighting. Incandescent bulbs are much less efficient than other types of electric lighting. Less than 5% of the energy they consume is converted into visible light; the rest is lost as heat. The luminous efficacy of a typical incandescent bulb for 120 V operation is 16 lumens per watt, compared with 60 lm/W for a compact fluorescent bulb or 150 lm/W for some white LED lamps. The heat produced by filaments is used in some applications, such as heat lamps in incubators, lava lamps, and the Easy-Bake Oven toy. Quartz envelope halogen infrared heaters are used for industrial processes such as paint curing and space heating. Incandescent bulbs typically have short lifetimes compared with other types of lighting; around 1,000 hours for home light bulbs versus typically 10,000 hours for compact fluorescents and 20,000–30,000 hours for lighting LEDs. Most incandescent bulbs can be replaced by fluorescent lamps, high-intensity discharge lamps, and light-emitting diode lamps (LED). Some governments have begun a phase-out of incandescent light bulbs to reduce energy consumption.
    0 Comments & Tags 0 hisse senetleri 1 Views
  • #Science #ScienceNews #Mathematics #logarithm

    In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number x to the base b is the exponent to which b must be raised, to produce x. For example, since 1000 = 103, the logarithm base 10 of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logb x, or even without the explicit base, log x, when no confusion is possible, or when the base does not matter such as in big O notation.

    The logarithm base 10 is called the decimal or common logarithm and is commonly used in science and engineering. The natural logarithm has the number e ≈ 2.718 as its base; its use is widespread in mathematics and physics, because of its very simple derivative. The binary logarithm uses base 2 and is frequently used in computer science.

    Logarithms were introduced by John Napier in 1614 as a means of simplifying calculations. They were rapidly adopted by navigators, scientists, engineers, surveyors and others to perform high-accuracy computations more easily. Using logarithm tables, tedious multi-digit multiplication steps can be replaced by table look-ups and simpler addition.
    #Science #ScienceNews #Mathematics #logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number x to the base b is the exponent to which b must be raised, to produce x. For example, since 1000 = 103, the logarithm base 10 of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logb x, or even without the explicit base, log x, when no confusion is possible, or when the base does not matter such as in big O notation. The logarithm base 10 is called the decimal or common logarithm and is commonly used in science and engineering. The natural logarithm has the number e ≈ 2.718 as its base; its use is widespread in mathematics and physics, because of its very simple derivative. The binary logarithm uses base 2 and is frequently used in computer science. Logarithms were introduced by John Napier in 1614 as a means of simplifying calculations. They were rapidly adopted by navigators, scientists, engineers, surveyors and others to perform high-accuracy computations more easily. Using logarithm tables, tedious multi-digit multiplication steps can be replaced by table look-ups and simpler addition.
    0 Comments & Tags 0 hisse senetleri 1 Views
  • https://www.sciencedirect.com/science/article/abs/pii/S0967064512001932
    https://www.sciencedirect.com/science/article/abs/pii/S0967064512001932
    WWW.SCIENCEDIRECT.COM
    The supergiant amphipod Alicella gigantea (Crustacea: Alicellidae) from hadal depths in the Kermadec Trench, SW Pacific Ocean
    Here we provide the first record of the ‘supergiant’ amphipod Alicella gigantea Chevreux, 1899 (Alicellidae) from the Southern Hemisphere, and extend …
    0 Comments & Tags 0 hisse senetleri 1 Views
  • https://en.wikipedia.org/wiki/Bombe
    https://en.wikipedia.org/wiki/Bombe
    EN.WIKIPEDIA.ORG
    Bombe
    The bombe (UK: ) was an electro-mechanical device used by British cryptologists to help decipher German Enigma-machine-encrypted secret messages during World War II. The US Navy and US Army later produced their own machines to the same functional specification, albeit engineered differently both from each other and from Polish and British bombes. The British bombe was developed from a device known as the "bomba" (Polish: bomba kryptologiczna), which had been designed in Poland at the Biuro Szyfrów (Cipher Bureau) by cryptologist Marian Rejewski, who had been breaking German Enigma messages for the previous seven years, using it and earlier machines. The initial design of the British bombe was produced in 1939 at the UK Government Code and Cypher School (GC&CS) at Bletchley Park by Alan Turing, with an important refinement devised in 1940 by Gordon Welchman. The engineering design and construction was the work of Harold Keen of the British Tabulating Machine Company. The first bombe, code-named Victory, was installed in March 1940 while the second version, Agnus Dei or ...
    1784 Comments & Tags 0 hisse senetleri 1 Views
  • https://www.brainyquote.com/authors/oprah-winfrey-quotes
    https://www.brainyquote.com/authors/oprah-winfrey-quotes
    WWW.BRAINYQUOTE.COM
    Oprah Winfrey Quotes - BrainyQuote
    Enjoy the best Oprah Winfrey Quotes at BrainyQuote. Quotations by Oprah Winfrey, American Entertainer, Born January 29, 1954. Share with your friends.
    0 Comments & Tags 0 hisse senetleri 1 Views
  • https://en.wiktionary.org/wiki/Walter
    https://en.wiktionary.org/wiki/Walter
    232 Comments & Tags 0 hisse senetleri 1 Views
  • https://en.wikipedia.org/wiki/Photoelasticity
    https://en.wikipedia.org/wiki/Photoelasticity
    EN.WIKIPEDIA.ORG
    Photoelasticity
    Photoelasticity describes changes in the optical properties of a material under mechanical deformation. It is a property of all dielectric media and is often used to experimentally determine the stress distribution in a material, where it gives a picture of stress distributions around discontinuities in materials. Photoelastic experiments (also informally referred to as photoelasticity) are an important tool for determining critical stress points in a material, and are used for determining stress concentration in irregular geometries. History The photoelastic phenomenon was first discovered by the Scottish physicist David Brewster, who immediately recognized it as stress-induced birefringence. That diagnosis was confirmed in a direct refraction experiment by Augustin-Jean Fresnel. Experimental frameworks were developed at the beginning of the twentieth century with the works of E. G. Coker and L. N. G. Filon of University of London. Their book Treatise on Photoelasticity, published in 1930 by Cambridge Press, became a standard text on the subject. Between 1930 and 1940, many other books appeared on the subject, including...
    296 Comments & Tags 0 hisse senetleri 1 Views

Password Copied!

Please Wait....